活性污泥工藝在經(jīng)歷了早期的專利權(quán)問題之后迎來了技術(shù)的空前繁榮,主要體現(xiàn)在基本理論的完善和各種變形工藝的出現(xiàn),尤其是20世紀(jì)70年代出現(xiàn)的生物脫氮除磷技術(shù)(BNR)成為活性污泥工藝發(fā)展的一個重要里程碑,并在某種程度上奠定了當(dāng)今污水處理技術(shù)的主要局面,同時生物膜工藝獲得再次發(fā)展機會,IFAS、MBBR及BAF等工藝由于其在緊湊性方面的優(yōu)勢在升級改造方面獲得了一定的優(yōu)勢。另外在20世紀(jì)末,一些創(chuàng)新性的工藝如厭氧氨氧化、好氧顆粒污泥技術(shù)逐漸登上了歷史舞臺?! ?/p>
在活性污泥工藝經(jīng)歷了100多年的發(fā)展之后,污水處理技術(shù)的大廈已經(jīng)相當(dāng)完善,目前的污水處理工藝在傳統(tǒng)水質(zhì)方面已經(jīng)不是問題,北美的研究結(jié)果表明,生物脫氮除磷工藝的極限可以達(dá)到TN<3 mg/L、TP<0.1 mg/L。荷蘭的研究結(jié)果也表明,在條件適應(yīng)的情況下活性污泥工藝的技術(shù)極限可以達(dá)到TN<2.2 mg/L、TP<0.15 mg/L。
污水處理理念的轉(zhuǎn)變 進(jìn)入21世紀(jì)后,污水處理領(lǐng)域內(nèi)出現(xiàn)了重大的理念變革,污水已經(jīng)不再被認(rèn)為是一種廢物,而是一種可再生的資源,污水處理也正由過去的以衛(wèi)生文明與環(huán)境保護(hù)為目標(biāo)向著資源回收的方向發(fā)展。這一點無論從荷蘭提出的NEWs理念,即未來污水處理廠將是營養(yǎng)物、能源與再生水的制造工廠,還是美國水環(huán)境聯(lián)盟正式摒棄污水處理廠之稱,轉(zhuǎn)而統(tǒng)稱為水資源廠,亦或是新加坡倡導(dǎo)的將Wastewater(污水)改稱為Usedwater(舊水),無不印證著在世界范圍內(nèi)污水作為一種可再生資源已經(jīng)深入人心。伴隨著理念的變革,污水處理工藝在技術(shù)的緊湊性、可持續(xù)性、適應(yīng)性方面朝著更加深入的方向發(fā)展。 2未來污水處理工藝發(fā)展的方向 當(dāng)前城市污水處理的主流技術(shù)是生物處理技術(shù),生物處理技術(shù)如何在未來發(fā)展實際上反映了今后相當(dāng)一段時間內(nèi)的污水處理工藝發(fā)展方向。本文僅對未來20年內(nèi)的污水處理技術(shù)發(fā)展做一些分析和判斷。 好氧顆粒污泥技術(shù) 歷史與現(xiàn)實中的現(xiàn)象 活性污泥工藝的出現(xiàn)與發(fā)展實際上是采用各種方法選擇微生物的過程。1914年,Ardern和Lockett將曝氣后沉淀下的污泥留了下來,將不易沉降的微生物“淘洗”出去,采用這種序批式的方式,他們觀察到了顆粒污泥的現(xiàn)象。 1972年,James Barnard在接觸穩(wěn)定的試驗裝置中也注意到了顆粒污泥的現(xiàn)象,當(dāng)時他用初沉池的出水進(jìn)入到反應(yīng)器中,接觸時間15 min,排泥只從表面排泥,接觸區(qū)的污泥濃度22 000 mg/L,Barnard觀察到了明顯的污泥顆粒,“像粗砂一樣”,當(dāng)時的污泥負(fù)荷非常高。 好氧顆粒污泥的形成與選擇 活性污泥工藝從誕生至今一直不斷經(jīng)歷著“選擇”的過程,早期的污泥回流使微生物選擇留在系統(tǒng)中,起到了最為關(guān)鍵的作用;此后,人們通過基本的長泥齡方式而使硝化菌在系統(tǒng)中選擇地存在;而生物除磷工藝的出現(xiàn),則是通過厭氧-好氧的交替環(huán)境選擇性地使聚磷菌(PAOs)在系統(tǒng)中存在,可以看出對微生物的選擇過程一直伴隨著污水處理工藝的發(fā)展。當(dāng)然,在這一系列的基本選擇過程中,還有其他因素的影響,比如硝化過程中對DO的需求、生物除磷過程對VFA的需求等。 好氧顆粒污泥技術(shù)的出現(xiàn)與發(fā)展實際上仍然是對微生物選擇過程的更進(jìn)一步認(rèn)識,在這一認(rèn)識過程伴隨著對生物膜、污泥膨脹的更加深入理解。好氧顆粒污泥既可以在只去除COD的好氧環(huán)境中出現(xiàn),也可以在厭氧-好氧的交替環(huán)境中去除COD及氮、磷,在這種形式的顆粒污泥中,硝化菌及普通異養(yǎng)菌在顆粒污泥的最外層,靠近內(nèi)核部分的是反硝化菌、聚磷菌(PAOs)、聚糖菌(GAOs)。因此,好氧顆粒污泥去除營養(yǎng)物的機理實際上與活性污泥工藝相同,只不過并不是在不同的池子來實現(xiàn),而是在顆粒污泥的不同區(qū)域來實現(xiàn)。 目前一般認(rèn)為主要有以下幾個方面對顆粒污泥的形成具有重要的影響: 飽食-饑餓選擇,通常以外部基質(zhì)用于生長的階段稱為飽食期,而以內(nèi)部基質(zhì)(PHB)生長的階段稱為饑餓期。與利用乙酸或葡萄糖等易生物降解有機物相比,異養(yǎng)微生物利用PHB或糖原等慢速可生物降解物質(zhì)的生長速率較慢,利用這一現(xiàn)象可以獲得穩(wěn)定的顆粒污泥。生物除磷的厭氧-好氧過程是實現(xiàn)上述過程的良好方式,在厭氧階段PAO或GAO將乙酸轉(zhuǎn)換為PHB或糖原。因此,rbCOD有利于微生物的快速生長,進(jìn)而轉(zhuǎn)換為慢速可生物降解的胞內(nèi)物質(zhì)。這樣在生物除磷工藝中就會相對更容易形成顆粒污泥。在饑餓階段,基質(zhì)通過顆粒內(nèi)層的反硝化被降解到最低,或是在顆粒外層的好氧區(qū)域?qū)崿F(xiàn)降解。 有機負(fù)荷(OLR)及基質(zhì)的組成對顆粒污泥的形成很重要,采用較高的負(fù)荷選擇可以使基質(zhì)進(jìn)入顆粒污泥的內(nèi)層,這樣就容易形成強健的內(nèi)核?;|(zhì)組成的影響主要是體現(xiàn)在快速可生物降解COD(rbCOD)與慢速可生物降解COD(sbCOD),在飽食期rbCOD和VFA的獲得對于胞內(nèi)存儲物質(zhì)的形成很關(guān)鍵,而sbCOD則會導(dǎo)致絲狀菌在好氧階段在競爭中獲得優(yōu)勢。人們在對生物膜的研究過程中,發(fā)現(xiàn)強的剪切力可以促使形成薄而密實的生物膜,同時伴隨著剪切力相關(guān)的一個重要現(xiàn)象是胞外聚合物(EPS)的產(chǎn)生,EPS在促使細(xì)胞的“凝聚”、“粘合”方面發(fā)揮重要的功能,對于維持生物膜的整體結(jié)構(gòu)方面扮演著重要的角色,在很多的研究中都可以觀察到強剪切力會促使生物膜分泌更多的EPS從而維持生物膜的整體結(jié)構(gòu)平衡。與生物膜類似,水力剪切力對于好氧顆粒污泥的形成也有重要的影響,強的剪切力會促使顆粒污泥的形成,而弱剪切力則不會形成顆粒污泥,只能形成蓬松的絮體結(jié)構(gòu)。 同樣,EPS在對顆粒污泥的形成方面也扮演著類似的角色,強剪切力會促使顆粒污泥像生物膜那樣分泌出更多的EPS來產(chǎn)生平衡的生物結(jié)構(gòu),這也就意味著EPS對于形成穩(wěn)定的顆粒污泥非常重要。 此外,通過選擇性的排泥,將不易沉淀的污泥排出系統(tǒng),沉降速度較快的顆粒留存于系統(tǒng)之內(nèi),提高顆粒污泥在其中的比例,這也是促成顆粒污泥形成的原因之一;其他形成顆粒污泥的因素還包括SRT、有機負(fù)荷、二價陽離子及三價陽離子等。 目前的應(yīng)用 目前,作為好氧顆粒污泥技術(shù)的典型代表,Nereda工藝在過去10年里得到快速的發(fā)展,截至2016年全球正在設(shè)計、建設(shè)及運行的Nereda污水處理廠有32座,這些污水處理廠分布于歐洲、美洲、澳洲、非洲等地。與相同負(fù)荷的活性污泥工藝相比,Nereda好氧顆粒污泥技術(shù)可減少占地面積25%~75%,能耗降低20%~50%。 從好氧顆粒污泥的技術(shù)發(fā)展進(jìn)程來看,以Nereda為代表的好氧顆粒污泥技術(shù)實際上是一種利用內(nèi)在基質(zhì)選擇顆粒污泥的過程,內(nèi)在基質(zhì)選擇的一個關(guān)鍵因素是需要有足夠高的基質(zhì)濃度來形成顆粒,并促使形成較高含量的胞外聚合物(EPS)及胞內(nèi)儲存物,這種方式要求將沉淀較慢的絮體污泥排除系統(tǒng),保留下沉淀較快的顆粒污泥,為了避免出水SS較高,可能需要有一個后置的過濾系統(tǒng)。Nereda這種SBR的技術(shù)形式在很大程度上限制了對現(xiàn)有污水處理廠的改造,因為絕大部分污水處理廠并不是SBR工藝。因此,在推流式工藝上采用外置選擇器的方式在近年來得到了快速的發(fā)展,外置選擇器可以是篩網(wǎng)或旋流器,篩網(wǎng)是利用顆粒的粒徑來截留較大的顆粒污泥,旋流器是利用顆粒污泥密度較大的特點而在底流中獲得較高比例的顆粒污泥。 未來的發(fā)展 好氧顆粒污泥技術(shù)在未來可能會有以下幾個發(fā)展趨勢。第一,提高工藝應(yīng)用的穩(wěn)定性,好氧顆粒污泥技術(shù)在長期運行過程中的穩(wěn)定性在某種程度上是制約這一技術(shù)應(yīng)用的一個瓶頸,穩(wěn)定性涉及到兩個方面,一個是顆粒污泥的解體,一個是絲狀菌的過度增殖,前者會導(dǎo)致顆粒污泥破碎為細(xì)小顆粒,后者會導(dǎo)致顆粒污泥蓬松,容易流失。 第二,就如同活性污泥工藝從早期的SBR向連續(xù)流工藝發(fā)展一樣,當(dāng)前及今后一段時間內(nèi)好氧顆粒污泥的研發(fā)及應(yīng)用趨勢正朝著連續(xù)流工藝的方向發(fā)展,因為現(xiàn)在的絕大部分污水處理廠是連續(xù)流工藝,將其轉(zhuǎn)為SBR的形式所需的投資費用很高,如何能夠在這些連續(xù)流的污水處理廠中應(yīng)用好氧顆粒污泥技術(shù)成為這一領(lǐng)域的發(fā)展熱點。 第三,好氧顆粒污泥技術(shù)的進(jìn)一步發(fā)展過程中,在機理與技術(shù)應(yīng)用方面仍然有多個方面需要深入研究,這些方面主要包括理解促成顆粒污泥形成的內(nèi)部基質(zhì)特性、如何確保外置選擇器能夠?qū)崿F(xiàn)良好的污泥沉降性能和生物除磷功能,以及如何將內(nèi)在基質(zhì)選擇和外部選擇的措施應(yīng)用于工程化規(guī)模的污水處理廠。 碳轉(zhuǎn)向 在傳統(tǒng)污水處理工藝中,COD的主要流向是被好氧分解,除此之外還用于脫氮除磷、厭氧消化及污泥處置。目前,污水中的碳已被廣泛認(rèn)為是可貴的資源,可以被用于產(chǎn)生能量(厭氧消化)、開發(fā)出以碳為基礎(chǔ)的商品。因此,污水中的可生物降解有機物從二級處理轉(zhuǎn)向能量回收的這一轉(zhuǎn)變被稱之為碳轉(zhuǎn)向,碳轉(zhuǎn)向是污水處理實現(xiàn)能量自給的必由之路,已經(jīng)成為當(dāng)前及今后一段時間內(nèi)污水處理技術(shù)發(fā)展的一個重要方向。 目前,碳轉(zhuǎn)向的技術(shù)主要有化學(xué)強化一級處理(CEPT)、高負(fù)荷活性污泥工藝、厭氧處理等。CEPT對顆粒性及膠體性COD可獲得40%~80%的去除率,但對溶解性COD無法去除。雖然污水的厭氧處理在熱帶地區(qū)有所應(yīng)用,但在溫帶地區(qū)的主流工藝中由于其速率較低,同時產(chǎn)生的甲烷會有相當(dāng)一部分溶解在出水中,因此尚難以得到廣泛的應(yīng)用。 高負(fù)荷活性污泥工藝 高負(fù)荷活性污泥工藝(HRAS)最早由Buswell和Long在1923年開創(chuàng)。HRAS可以設(shè)計成滿足二級處理(BOD5<30 mg/L、SS<30 mg/L)的目的,也可以設(shè)計AB工藝的A段用于碳吸附的目的。當(dāng)用于二級處理時,HRAS的SRT一般1~4 d(與溫度有關(guān)),HRT一般2~4 h;當(dāng)用于碳吸附時工藝參數(shù)有顯著的不同,通常SRT<1 d、HRT<30 min。HRAS工藝能夠用較低的能耗和占地面積將進(jìn)水中的顆粒性、膠體性、溶解性物質(zhì)富集濃縮于剩余污泥中,通過厭氧消化或焚燒由此實現(xiàn)污水處理的碳轉(zhuǎn)向。HRAS工藝實現(xiàn)碳轉(zhuǎn)向的關(guān)鍵所在是顆粒性COD與膠體性COD的最大化去除,同時又要最低程度的礦化和慢速可生物降解COD(sCOD)的水解。在HRAS工藝中,顆粒性COD與膠體性COD是通過生物絮凝吸附于絮體之上并通過后續(xù)的固液分離得到去除,顆粒性COD與膠體性COD的吸附與胞外聚合物(EPS)的產(chǎn)生有密切關(guān)系,而溶解性COD的去除是胞內(nèi)物質(zhì)貯存的結(jié)果。 雖然ASM模型的歷史已有30年之久,但主要是用于SRT>3 d的活性污泥工藝,對于HRAS工藝ASM模型難以得到理想的結(jié)果。由此,近年來有關(guān)HRAS工藝的模型得到了發(fā)展,其中之一便是雙基質(zhì)模型用于解釋HRAS工藝的特性,雙基質(zhì)模型的核心之處是將溶解性可生物降解有機物(SB)進(jìn)一步分為快速溶解性可生物降解有機物(SBf)和慢速溶解性可生物降解有機物(SBS),雙基質(zhì)模型認(rèn)為SBf 與SBS同時被生物降解,微生物利用SBf的最大比生長速率較SBS的要高,進(jìn)一步的試驗也驗證雙基質(zhì)模型較雙階段模型更為準(zhǔn)確,雙階段模型認(rèn)為微生物首先利用SBf,之后再利用SBS。 HiCS工藝
在對HRAS工藝機理認(rèn)識不斷深入的同時,一些衍生工藝也得到了發(fā)展,并展現(xiàn)出更好的發(fā)展勢頭,其中之一便是高負(fù)荷接觸穩(wěn)定工藝。傳統(tǒng)接觸穩(wěn)定工藝是1922年Coombs在英國開創(chuàng),一般SRT>3 d,通常目的是為了減少反應(yīng)池的池容。HiCS工藝的SRT一般為0.2~3 d,是HRAS和接觸穩(wěn)定工藝的相互結(jié)合,生物吸附能力更強,所需的池容更小,污水的碳轉(zhuǎn)向效率更高。 HiCS工藝包括穩(wěn)定池和接觸池,進(jìn)水直接進(jìn)入接觸池,保持在厭氧或較低的DO環(huán)境,回流污泥進(jìn)入穩(wěn)定池進(jìn)行曝氣。接觸池去除進(jìn)水有機物的主要機理是微生物在飽食狀態(tài)下的吸附與胞內(nèi)貯存,而在穩(wěn)定池中微生物處于饑餓階段,大量吸附回流污泥中的顆粒態(tài)、膠體態(tài)物質(zhì)。在HiCS工藝中,接觸池與穩(wěn)定池之間會形成一定的基質(zhì)梯度,迫使微生物經(jīng)歷“飽食-饑餓”的環(huán)境,產(chǎn)生一種令微生物傾向于吸附與貯存基質(zhì)的選擇壓,起到類似活性污泥工藝中選擇器的作用。 在HiCS工藝中,當(dāng)接觸池的泥齡為0.3 d,好氧的條件下會產(chǎn)生較為明顯的EPS,EPS的產(chǎn)生會提高生物絮凝性能,這對于實現(xiàn)能量的最大化回收以及保持良好的污泥沉降性能非常關(guān)鍵。在某種程度上這與好氧顆粒污泥形成的條件之一“飽食-饑餓”有著類似之處。 HiCS工藝的發(fā)展為實現(xiàn)污水處理的能量自給開辟了一條值得借鑒的方法,污水中蘊含著客觀的能量,有的研究結(jié)果顯示污水中所蘊含的化學(xué)能是處理所需能耗的1.2~6倍,但目前絕大多數(shù)處理工藝是分解COD,而非回收COD。研究結(jié)果顯示,HiCS工藝較傳統(tǒng)活性污泥工藝能量回收高1倍。通常,傳統(tǒng)活性污泥工藝的能耗是27 kWh·PE(PE為人口當(dāng)量),HiCS的能量回收可以達(dá)到28 kWh·PE,非常有利于實現(xiàn)污水處理的能源自給。HiCS工藝在未來進(jìn)一步發(fā)展的方向仍然是需要更深入了解吸附、貯存、生長及氧化的機理,并在工程尺度的規(guī)模上優(yōu)化設(shè)計與運行。 主流短程脫氮技術(shù) 主流短程脫氮技術(shù)包括短程硝化反硝化(Nitrite shunt)、厭氧氨氧化、厭氧甲烷氧化(DAMO)。目前,厭氧甲烷氧化仍處于基礎(chǔ)研究階段,可能在未來相當(dāng)長一段時間還難以走向?qū)嶋H工程應(yīng)用,短程反硝化和厭氧氨氧化的蓬勃的發(fā)展勢頭令人關(guān)注。 現(xiàn)狀 從工程角度而言,推動短程硝化反硝化及主流厭氧氨氧化發(fā)展的動力主要來自于減少或摒棄外加碳源的需求、降低曝氣能耗以及追求更小的反應(yīng)池容。 不同的水質(zhì)特征會影響到主流短程脫氮技術(shù)的選擇,如果進(jìn)水碳氮比較高(C/N=6~10)時適合傳統(tǒng)硝化反硝化,當(dāng)碳氮比處于中等水平(C/N=3)適宜短程硝化反硝化,當(dāng)碳氮比較低時(C/N<1)時適合主流厭氧氨氧化。由于主流厭氧氨氧化的前景巨大,同時短程硝化是厭氧氨氧化的一個必要前提,因此主流厭氧氨氧化成為脫氮技術(shù)發(fā)展的焦點。 目前,國際上主流厭氧氨氧化的技術(shù)發(fā)展路線大致有四類:顆粒污泥、絮體+顆粒污泥、生物膜/IFAS以及懸浮+生物膜的形式形式。 上述四種技術(shù)路線各有特點,在保持Anammox菌方面,顆粒污泥、生物膜/IFAS及懸浮+生物膜的方式比較類似,Anammox菌生長在顆粒內(nèi)或附著于填料上;絮體+顆粒污泥的技術(shù)路線是利用旋流器或篩網(wǎng)分離Anammox菌;在抑制NOB方面,主要的控制方式有出水殘留氨氮濃度、SRT控制、DO控制、瞬時缺氧等。不同的技術(shù)路線所采用的NOB抑制措施也不完全相同,顆粒污泥路線的方式是控制曝氣的體積、出水殘留氨氮、HRT控制絮體的泥齡;生物膜/IFAS技術(shù)路線的方式保持較低的DO、生物膜厚度的控制以及出水殘留的氨氮濃度;絮體+顆粒污泥與懸浮+生物膜的技術(shù)路線是保持較高的DO、出水殘留氨氮濃度、瞬時缺氧、主動SRT等。 從實踐層面來看,各種不同技術(shù)流派已經(jīng)或正在中試及工程尺度規(guī)模推進(jìn)主流厭氧氨氧化的實踐。目前,主流DEMON工藝在德國、奧地利、荷蘭、美國、丹麥的污水處理廠正在探索,主流Anita-Mox在巴黎的中試試驗結(jié)果表明,在最低水溫為15 ℃時,出水TN可以穩(wěn)定低于15 mg/L。新加坡樟宜再生水廠的研究結(jié)果也表明,Anammox菌對該廠的主流脫氮貢獻(xiàn)達(dá)到了31%。這些不同層面的實踐正一步步推動主流厭氧氨氧化技術(shù)向前發(fā)展。 目前的挑戰(zhàn)與現(xiàn)實意義 雖然世界各地的污水處理實踐不斷地推動和深化主流厭氧氨氧化的認(rèn)識,但目前的挑戰(zhàn)依然巨大,這些挑戰(zhàn)從宏觀層面看主要是水溫較低與基質(zhì)濃度較低造成的不利影響,從微觀層面來看實際上是如何控制不同微生物的高度共生。 在主流厭氧氨氧化工藝中,主要有Anammox菌、AOB、NOB、普通異養(yǎng)菌(OHO),這些微生物共存于一個系統(tǒng)中,對不同的基質(zhì)形成了非常復(fù)雜的競爭關(guān)系,主要有AOB與NOB對氧的競爭(DO的控制水平、曝氣的時間)、NOB與Anammox菌對亞硝酸鹽氮的競爭(不同的亞硝酸鹽氮半飽和濃度及不同的溫度敏感性)以及異養(yǎng)菌與NOB對亞硝酸鹽氮的競爭,如何控制這些微生物處于合理的水平無論是對于微生物的認(rèn)知還是控制手段的優(yōu)化都是巨大的挑戰(zhàn)。 在這些復(fù)雜的競爭關(guān)系中,如何抑制NOB成為這一技術(shù)發(fā)展的關(guān)鍵所在,從目前的認(rèn)識來看,NOB遠(yuǎn)比我們之前的認(rèn)識復(fù)雜,抑制的難度也較大。在側(cè)流工藝中,NOB主要是Nitrobacter,對NO-2-N有較低的親和力。而在主流工藝中,NOB主要是Nitrospira,對NO-2-N有較高的親和力,如表1所示。 Anammox菌對NO2-N的半飽和常數(shù)約0.6 mg NO-2-N,這樣在與Nitrospira對NO-2-N的競爭中就會處于劣勢,最終無法實現(xiàn)短程脫氮。因此,雖然目前的各種手段有助于抑制NOB,但在工程規(guī)模的負(fù)荷變化中,仍然難以有效地解決這一問題。
盡管主流厭氧氨氧化沒有完全成熟,但由于這一技術(shù)的巨大吸引力促使世界各地的污水處理廠不斷探索實踐,同時主流厭氧氨氧化的一些技術(shù)措施對傳統(tǒng)工藝也是有利,比如側(cè)流向主流工藝的生物強化會提高主流工藝的污泥沉降性能、間歇曝氣有助于降低傳統(tǒng)工藝的出水TN等。
來源:中國水網(wǎng) 作者:中國水網(wǎng)